PC-ORD对电子表格中的生态数据进行多变量分析。PC-ORD的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,PC-ORD还提供了许多统计数据包中不可用的排序和分类技术:CCA、DCA、指示物种分析、Mantel试验、部分Mantel试验、MRPP、PCoA、perMANOVA、RDA、双向聚类、TWINSPAN、Beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3D排序、Bray-Curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(NMS或NMDS)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受较多32,000行或32,000列和较多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
? *四角问题
因为是四个基本矩阵的排列(参见Dray和Legendre(2008,Fig.1a)和McCune 和Grace(2002,Fig.2.1)的形状x环境位置),所以通过样本单元X物种矩阵将物种性状与环境变量联系起来的方法问题被称为*四角问题。*四角分析提供了这些矩阵之间的链路强度的统计测试。*四角分析理论与数学的详细解释请参看Legendre et al. (1997), Dray和Legendre (2008), Ter Braak et al, (2012), 和 Dray et al. (2014)。
? 二元分类
如果已给变量中,有n个分类(每个分类级别有*特的值标签),然后将生成n个新的二进制(0/1)变量。每个新变量将被*值为0或1的Q变量。
PC-ORD和R软件功能对比
虽然在PC-ORD和R中有许多相同的工具可用,但是用户体验从根本上不同。为了对R中的社区数据进行必要和适当的分析,您必须学习R编程语言,手动识别、搜索、下载“vegan”和各种其他的程序包,并根据需要修改代码以实现分析目标并获得合适的图形。PC-ORD软件操作简单、*驱动的分析偏好选项、点击图形用户界面便利、交互式图形的功能很灵活、内置上下文敏感的帮助系统以及免费**技术支持,这些在R软件里都是没有的功能。R软件鼓励用户开发脚本,PC-ORD还允许高级用户通过其“批处理”功能开发脚本,以及将用户开发的模块集成到菜单系统中。因此,PC-ORD使您能够快速、有信心地选择、运行和解释适当的分析,并在没有准备工作的情况下生成定制的、出版质量的图形。使社区分析的过程变得简单和*,以至于初学者实际上有可能做到这一点并且做得正确。PC-ORD不仅把您需要的大部分工具放在一个地方,而且因为编程已经为您完成了,您可以把时间花在探索数据、回答问题和测试假设等真正重要的事情上。PC-ORD帮助您确保可以清楚地看到数据集和目标的选项,并帮助您以强大的图形和详细的解释结果列表解释您的结果。
PD-ORD具备的而R软件没有的功能
Integrated:快速便捷的Windows菜单驱动分析和图形化集成到单个程序中。
Supported:及时的软件和分析问题反馈。
Flexible:菜单驱动的参数设置选项允许适当的定制分析。
Comprehensive:包括主要分析工具和社区分析的*特工具。
Help System:广泛的上下文敏感帮助系统。
Advisor Wizard:帮助您决定如何转换和分析数据。
Decision Tree Poster:帮助您理解Advisor Wizard逻辑。
Step-by-Step Book:详细的向导手册。
Analysis Book:介绍各种分析方法。
PC-ORD对电子表格中的生态数据进行多变量分析。PC-ORD的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,PC-ORD还提供了许多统计数据包中不可用的排序和分类技术:CCA、DCA、指示物种分析、Mantel试验、部分Mantel试验、MRPP、PCoA、perMANOVA、RDA、双向聚类、TWINSPAN、Beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3D排序、Bray-Curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(NMS或NMDS)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受较多32,000行或32,000列和较多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
等高线覆盖图
当您选择一个Q变量作为覆盖时,您会得到一个表格显示拟合是如何随柔韧度(平滑参数)变化而变化的,这个参数被用于非参数回归的覆盖变量而不是轴得分。如果您选择“Optimize” 柔韧度,PC-ORD会选择具有较高交叉验证适合度(xR2)的柔韧度。如果您希望为柔韧度选择特定值,请选择"Specify"柔韧度。如果需要的话,使用“Optimize”下的表格来帮助您选择一个特定的柔韧度。最后,您可以得到一个轮廓叠加到排序空间中,您还可以自定义,包括颜色阴影和/或轮廓间隔标记。
PC-ORD对电子表格中的生态数据进行多变量分析。PC-ORD的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,PC-ORD还提供了许多统计数据包中不可用的排序和分类技术:CCA、DCA、指示物种分析、Mantel试验、部分Mantel试验、MRPP、PCoA、perMANOVA、RDA、双向聚类、TWINSPAN、Beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3D排序、Bray-Curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(NMS或NMDS)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受较多32,000行或32,000列和较多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
? 创造性状组合
通过组合来自两个现有变量的类别来创建一个新的分类变量。从两个选择变量中的每个类别的组合被视为新变量中的新类别。由此产生的新变量总是**的。现有变量保留完整,但您可以通过Modify|Delete按钮很*的将它删除。
例如,假设您有两个分类变量,一个是对原生与非本土物种的编码,一个是对一年生植物和多年生植物的编码。这可能在分析中发挥作用,如果这些物种的组合,例如,非本地一年生植物,在生态上与所有现存物种特别不同?因此,您可能希望用这些性状类别的所有四种组合来创造一个新的分类变量:(1)本地一年生植物,(2)原生多年生植物,(3)非**一年生植物,(4)非**多年生植物。
? 计算SU x形状矩阵
计算样本单元x特征矩阵提供了分析物种性状和解释变量之间关系的灵活的第一步。该矩阵是通过将样本单元x物种矩阵乘以物种x特征矩阵来获得的,但是矩阵所得到结果的内容,取决于性状是否标准化,以及乘法之后是否是加权平均步长(MCCUNE 2015)。为了较大化SUX性状矩阵的通用性,包括性状之间的可比性,以及广泛的距离度量的可用性,我们建议首先将性状标准化为较小至较大,然后计算每个样本单位的丰度加权性状平均值。
PC-ORD对电子表格中的生态数据进行多变量分析。PC-ORD的重点是非参数工具、图形表示、随机化测试和自举置信区间的社区数据分析。除了用于转换数据和管理文件的实用程序之外,PC-ORD还提供了许多统计数据包中不可用的排序和分类技术:CCA、DCA、指示物种分析、Mantel试验、部分Mantel试验、MRPP、PCoA、perMANOVA、RDA、双向聚类、TWINSPAN、Beals平滑、多样性指数、物种列表、许多排序叠加方法(定量、符号编码、颜色编码、网格、联合图、双情节、连续向量)、各种旋转方法、3D排序、Bray-Curtis排序、城市街区距离测量、物种面积曲线、树数据摘要、发布质量树图、自动驾驶模式的非度量多维范围(NMS或NMDS)。可以分析大型数据集。只要您计算机的内存够,大多数操作接受较多32,000行或32,000列和较多536,848,900个矩阵元素的矩阵。完整的手册包括上下文敏感的帮助系统。
? 基于距离的冗余分析(DBRDA)
基于距离的冗余分析(DRBDA)类似于冗余分析(RDA),除了主矩阵由它的主坐标代替,使用您选择的距离度量。这个变体的目的是允许您选择non-Euclidean距离度量,如Sorensen(Bray-Curtis),这个已经证明在群落生态学中是有效的。
? Categorical Counts
Categorical Counts提供一种用给定范畴值跟踪案例数量的方法(行,通常指示例单元)。默认情况下,对选定矩阵中的所有分类变量都执行此操作。提供了快速评估类别的频率,对于实验设计中的平衡或不同类别的采样有效性等问题是有用的。
? Functional Diversity
Functional diversity分析了样本单元x物种矩阵与物种x性状矩阵的组合。PC-ORD中的功能多样性措施的原理和使用在以下主题中描述。
其他已有的分析方法
? Gower Distance
Gower(1971a)系数在相似性或相异性度量中是非常不寻常的,因为它可以基于定性(分类)数据、定量数据或两者的混合物来计算。分类数据作为匹配问题来处理:共享定性属性的项从该属性接收相似性单元。参看Legendre和Legendre(1998)对这个方法的详细描述。
-/gjjiac/-
http://awen20.b2b168.com